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Abstract

A differential quadrature (DQ) methodology is employed for the static and stability analysis of irregular quadri-

lateral straight-sided thin plates. A four-noded super element is used to map the irregular physical domain into a square

computational domain. Second order transformation schemes with relative ease and low computational effort are

employed to transform the fourth order governing equations of thin plates between the domains. Within the domain,

the displacements are the only degrees of freedom whereas, along the boundaries, the displacements as well as the

second order derivatives of the displacements with respect to the associated normal coordinate variables in the com-

putational domain are the two sets of degrees of freedom. The implementation procedures for different boundary

conditions including free-edge boundaries are formulated. To demonstrate the accuracy, convergency and stability of

the methodology, detailed studies of skewed and trapezoidal plates for different geometries under different boundary

and loading conditions are made. Good agreement is achieved between the results of the present methodology and

those of other DQ methodologies or other comparable numerical algorithms.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Wang et al. (1994) used the differential quadrature method (DQM) for the first time for buckling and free
vibration analyses of thin skew plates. They employed the method for the analysis of simply supported and
clamped plates. Using other numerical algorithms such as the finite element method (FEM), work on ir-
regular plate problems is not new and goes back to the early stages of the development of these algorithms.
Related to static and buckling analysis of skew plates, some of the early and related work may be found in
references (Argyris, 1965; Jirousek and Leon, 1977; Kennedy and Prabhakara, 1979; Yetram, 1972).

Although the DQM has now established itself as an alternative numerical tool, still some major diffi-
culties have to be dealt with. In this respect, a major difficulty arises from the implementation of the
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boundary conditions which has been explained in previous papers (Karami and Malekzadeh, 2002, in
press). Methods such as the presentation of the boundary points as two very near neighboring points (the
so-called d-technique, Bert et al., 1988; Bert and Malik, 1996a,b); or building special weighting coefficients
to stand for the boundary conditions (Wang and Bert, 1993); or taking the slope on the boundary as a
degree of freedom (Chen et al., 1997; Wang and Gu, 1997; Wu and Liu, 1999, 2000, 2001); and the so-called
CBCGE and SBCGE methods (Shu and Du, 1997a,b) are different treatments that have been introduced
and implemented. Another alternative method to be introduced here and to be implemented in static and
stability analyses of arbitrary straight-sided quadrilateral thin plates is claimed to be general and more
accurate for these types of structures. In the present methodology, the weighting coefficients are not ex-
clusive and any of the general schemes used in conventional DQM may be employed to determine the
weighting coefficients. The applicability of the methodology to beam analysis and also to the analysis of the
free vibration of irregular plates was demonstrated through previous studies (Karami and Malekzadeh,
2002, in press). It has been proved that, for cases where conventional DQMs have not yielded a convergence
trend or erratic behavior, the new methodology yields accurate results with excellent convergency behavior.
All kinds of boundary conditions, including free-edge boundary conditions, can be implemented in a
mechanized form. Based on this methodology, the DQ static and stability analyses of irregular skew plates
under all forms of loading and geometrical boundary conditions are to be addressed in this paper. The
implementations of the boundary conditions in a systematic form are to be demonstrated.

2. Review of the differential quadrature method

In the method of DQ, the partial derivative of the field variable at a discrete point in the computational
domain is approximated by a weighted linear sum of the values of the field variable along the line passing
through that point which is parallel to the coordinate direction of the derivative. Therefore, according to
the DQ rule for any function { }, one has,

of g
on

of g
og

( )�����
ðni ;gjÞ

¼
PNn

m¼1 A
ðnÞ
im f gmjPNg

n¼1 A
ðgÞ
jn f gin

( )
ð1Þ

o2f g
on2

o2f g
og2

o2f g
on og

8>><>>:
9>>=>>;
��������
ðni ;gjÞ

¼

PNn
m¼1 B

ðnÞ
im f gmjPNg

n¼1 B
ðgÞ
jn f ginPNn

m¼1
PNg

n¼1 A
ðnÞ
im A

ðgÞ
jn f gmn

8><>:
9>=>; ð2Þ

where AðnÞ
ij , A

ðgÞ
ij are the weighting coefficients corresponding to first order derivatives, and BðnÞ

ij and BðgÞ
ij are

the weighting coefficients corresponding to second order derivatives in n and g directions. Nn and Ng are the
numbers of grid points along the n and g axes, respectively. From the above approximations, one can
realize that determination of the weighting functions plays an important role in DQM analysis. Among the
many methods that have been used to evaluate the weighting coefficients in DQ analysis, the method de-
veloped primarily by Michelsen and Villadsen (1972), which was used by Shu and Richards (1992), is to be
employed in this work as well. It has been claimed that this method is computationally more efficient and
accurate. In fact Michelsen and Villadsen (1978) have shown that DQM’s coefficients are the same as
collocation method’s ones when Lagrange interpolation functions are used as the test functions. For the
grid points arrangements, the distributions according to Shu and Richards (1992) have been used. This has
also proved to yield more accurate results.
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3. The degrees of freedom

A natural coordinate system ðn; gÞ for the computational domain is chosen, where �16 n; g6 1. The
displacement w, and the second derivative of the displacement with respect to a natural coordinate variable
normal to the boundary, and only along the boundary, would be set as the two degrees of freedom of the
problem. For example, along the boundary, n ¼ 1, jn ¼ o2w=on2 presents the second degree of freedom.
Hence, in general, jn (n ¼ n or g) would play the role of an unknown parameter on the boundary. In order
to incorporate the new degrees of freedom into the differential equations and facilitate the boundary
conditions implementation, the higher order derivatives (derivative with order P 2) with respect to the
coordinate system of the actual domain would be expressed in terms of jn (n ¼ n or g) and also the dis-
placement w using the geometrical mapping procedure.

4. The geometrical mapping

Consider an arbitrary straight-sided quadrilateral plate shown in Fig. 1(a). The geometry of this plate
can be mapped into a rectangular plate to be referred to as the computational domain. The coordinate axes
of the quadrilateral plate which occupy the actual (or physical) domain are denoted by x and y; whereas
those of the computational domain are denoted by n and g. The mapping process follows the standard
procedure used widely in conventional finite element formulations; the physical domain is mapped into the
computational domain according to the following transformation law

x ¼
XNs

i¼1
xiwiðn; gÞ; y ¼

XNs

i¼1
yiwiðn; gÞ ð3Þ

where xi and yi are the coordinates of node i in the physical domain, and Ns is the number of nodal points.
wiðn; gÞ is the shape function associated with node i:

wiðn; gÞ ¼ 1
4
ð1þ nniÞð1þ ggiÞ; i ¼ 1; . . . ; 4 ð4Þ

where ni and gi are the coordinates of nodal point i in the computational domain n � g. The transfor-
mation law in (4) would rule the relations between the geometries of the two domains. The derivatives
of any function defined in one domain may be transformed into the other using the mapping or shape
function rule defined. For example, the first, second, and third derivatives of any function { } in the

Fig. 1. (a) An arbitrary straight-sided quadrilateral plate (physical domain), (b) computational domain.
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computational domain may be obtained in terms of the derivatives in the physical domain from the chain
rule according to
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where xI ;i, xI ;ij and xI ;ijk; the components of the transformation matrices for the derivatives, are related to
the shape functions which map the geometry for the two coordinates. xI ;i is a component of the so-called
Jacobian transformation matrix. The inverse transformation matrices may be evaluated so that the deri-
vatives in the physical domain may be determined in terms of the derivatives in the computational domain,
so that
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where ½Tij	, the inverse transformation matrices, are related to the transformation matrices according to,

½T11	 ¼ ½J11	�1; ½T21	 ¼ �½J22	�1½J21	½J11	�1; ½T22	 ¼ ½J22	�1

½T31	 ¼ �½J33	�1½J31	½J11	�1; ½T32	 ¼ �½J33	�1½J32	½J22	�1; ½T33	 ¼ ½J33	�1

In Appendix A, the components of the transformation matrices, ½Jij	 are given.
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5. DQ analogous of plate governing equation

The general governing equation of a thin, materially and geometrically systemic, elastic plate can be
written as,
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where, w, Nx, Ny , Nxy , and pðx; y; tÞ are the transverse displacement, in plane normal and shear edge forces in
x and y directions, and the intensity of transverse distributed loads, respectively. Also, Ci, q, h, k are, re-
spectively, the flexural rigidity coefficients, density, thickness, and elastic stiffness of the support.

Two second order transformation processes transform the governing equation from the physical domain
into the computational domain. Bert and Malik (1996a,b) used the first order transformation rule four
times to do the job. The approach employed here will need less computational effort. To employ the second
order transformations, Kx, Ky and Kxy are defined as,
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Using these definitions, the governing equation, i.e., Eq. (11), takes the following form,
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In Eq. (13), Nx is chosen as the load parameter. Other nonzero components of the plane forces may be
employed as loading parameters to study the stability analysis of the equilibrium state if required. Em-
ploying the second order transformation law given by Eq. (9), the governing equation (13) becomes,
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In the above equation,
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For grid points within the domain, the second order derivatives are expressed in terms of the displacement,
w, that is,
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Using Eqs. (1), (2), and (15), the DQ analogue to the plate governing equation can be written:
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for i ¼ 2; 3; . . . ;Nn � 1; and j ¼ 2; 3; . . . ;Ng � 1

A second order transformation will be used to transform Kx and Ky from the physical domain into the
computational domain. To do so, one may employ Eq. (9) in the following form at any arbitrary grid point
ðnm; gnÞ:
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where ½T 21	 and ½T 22	 are the reduced form of the second order transformation ½T21	 and ½T22	. Employing the
above relation, Eq. (16) may be written as
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Using quadrature rule for the first and second orders derivatives (except for those which are chosen as
the degrees of freedom at the boundary points), one may reduce the governing equation to a standard
form.

½Sdb	fUbg þ ½Sdd	fUdg þ Nxð½Bdb	fUbg þ ½Bdd	fUdgÞ þ q
o2Ud

ot2
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¼ fpg ð19Þ

In the above equation,

fUbg ¼ fwgb
fjgb


 �
; fUdg ¼ fwgd; fUbg ¼ fwgb

The subscript b denotes a boundary point whereas d represents a domain grid point.

6. Implementation of boundary conditions

In the following section, the DQ analogues of three types of boundary conditions, i.e., simply supported
(S), clamped (C), and free edges (F) will be presented. In order to simplify the notations in the DQ ana-
logues, we use the indices bn for the edges n ¼ �1 which take the value of 1 at the edge n ¼ �1 and Nn at the
edge n ¼ 1, respectively. Similarly, bg will be used for the edges g ¼ �1, in which bg ¼ 1 at g ¼ �1 and
bg ¼ Ng at the edge g ¼ 1, respectively.

6.1. Simply supported

For simply supported edges, the boundary conditions are:

w ¼ 0; Mn ¼ 0 ð20Þ

The bending moment Mn can be expressed in terms of the Cartesian components of the moments at that
point as (Timoshenko and Woinowsky-Krieger, 1970);

Mn ¼ n2xMx þ n2yMy þ 2nxnyMxy

where nx and ny are, respectively the x and y components of the unit normal to the boundary. Eq. (20) may
be formatted as,

Mn ¼ fngTfMg ¼ fngT½D	fKg ð21Þ
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where,

fngT ¼ n2x n2y 2nxny
� �

; ½D	 ¼ ½�II 	½D	; ½�II 	 ¼
1 0 0
0 1 0
0 0 2

24 35
½D	 is the bending stiffness matrix of the plate (see Appendix B). Using the second order transformation law
from Eq. (9), Eq. (21) reads,
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where

fM1gT ¼ fngT½D	½T21	; fM2gT ¼ fngT½D	½T22	

If edges n ¼ �1 or n ¼ 1 are simply supported, the DQ analogues of the first equation in (20) will take the
form

wbnJ ¼ 0 for J ¼ 2; 3; . . . ;Nn � 1 and bn ¼ 1 or bn ¼ Nn ð23Þ

whereas the DQ analogues of the second equation (20) will be
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In the same way for edges g ¼ �1 or g ¼ 1:

wIbg ¼ 0 for I ¼ 2; 3; . . . ;Ng � 1 and bg ¼ 1 or bg ¼ Ng ð25Þ
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6.2. Clamped

The boundary conditions for clamped edges can be stated as

w ¼ 0;
ow
on

¼ 0 ð27Þ

where n stands for n and g.
If the edges n ¼ �1 or n ¼ 1 will be clamped, the DQ analogues of the first equation in (27) become

wbnJ ¼ 0 for J ¼ 2; 3; . . . ;Nn � 1 and bn ¼ 1 or bn ¼ Nn ð28Þ

A zero slope boundary condition would be implemented through jn. For example, along the edge n ¼ �1
the condition ow=on ¼ 0 might be implemented by
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where ml ¼ 2 for a zero slope condition at n ¼ �1, otherwise ml ¼ 1. For a zero slope condition at edge
n ¼ 1, mu ¼ Nn � 1, otherwise, mu ¼ Nn. Also, as stated before, bn ¼ 1 for n ¼ �1 and bn ¼ Nn for n ¼ 1.
The slope term in the summation in Eq. (29) can be expanded
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In a similar way, one can implement the clamped boundary condition at edge g ¼ �1 or g ¼ 1; the results
read

wIbg ¼ 0 for I ¼ 2; 3; . . . ;Ng � 1 and bg ¼ 1 or bg ¼ Ng ð31Þ
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where ml ¼ 2 if a zero slope condition applies to the edge g ¼ �1, otherwise, ml ¼ 1. For a zero slope
condition at edge g ¼ 1, ml ¼ Ng � 1, otherwise ml ¼ Ng. Also, bg ¼ 1 for g ¼ �1 and bg ¼ Ng for g ¼ 1.

6.3. Free-edge boundary condition

For a free boundary condition the conditions (Timoshenko and Woinowsky-Krieger, 1970)

Mn ¼ 0; Qn þ
oMsn

os
¼ 0 ð33Þ

should be satisfied. s and n are the coordinate variables of the axes tangent and normal to the boundary, Qn

is shear force and Msn is the twisting moment at the edges (Timoshenko and Woinowsky-Krieger, 1970).
The DQ analogue of Mn is given by Eqs. (24) and (26). The DQ analogues of the effective shear stresses will
be derived based on a new approach (Karami and Malekzadeh, in press). Eq. (33) may be written as,
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The details of derivation and also the definition of matrix fF g are given in Appendix B. Using Eq. (10), Eq.
(34) becomes
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where

fF 3g ¼ fF gT½T33	; fF 2g ¼ fF gT½T32	; fF 1g ¼ fF gT½T31	

Along the edges n ¼ �1 or n ¼ 1, the DQ rule can be applied to Eq. (35) to derive DQ analogues of zero
effective shear forces,
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m¼1 A

ðnÞ
bnm

wmJPNn
n¼1 A

ðnÞ
bnn

wbnn

8<:
9=; ¼ 0 for J ¼ 2; 3; . . . ;Nn � 1 ð36Þ

The above relations along the edges g ¼ �1 or g ¼ 1 can be written similarly:

fF 3gTIbg

PNn
m¼1 C

ðgÞ
Im wmbgPNg

n¼1 C
ðgÞ
bgnwInPNn

m¼1
PNg

n¼1 B
ðgÞ
Im A

ðgÞ
bgnwmnPNn

m¼1
PNg

n¼1 A
ðgÞ
Im B

ðgÞ
bgnwmn

8>>>>><>>>>>:

9>>>>>=>>>>>;
þ fF 2gTIbg

PNn
n¼1 B

ðgÞ
Im wmbg

jg
IbgPNn

m¼1
PNg

n¼1 A
ðgÞ
Im A

ðgÞ
bgnwmn

8>><>>:
9>>=>>;

þ fF 1gTIbg

PNn
m¼1 A

ðgÞ
Im wmbgPNg

n¼1 A
ðgÞ
bgnwIn

( )
¼ 0 for I ¼ 2; 3; . . . ;Ng � 1 ð37Þ

7. The stability analysis

The displacements on the boundaries may be written as

fwgb ¼ ½Sbb	fUdg ð38Þ

where ½Sbb	 is obtained by partitioning and using matrix algebra on the coefficients of the system of
equations. Using Eq. (38) and eliminating the boundary terms from the governing equation, one has

ð½S	 þ Nx½B	ÞfUdg ¼ f0g ð39Þ

In the above equation,

½S	 ¼ ½Sdb	½Sbb	 þ ½Sdd	; ½B	 ¼ ½Bdb	½Sbb	 þ ½Bdd	

From Eq. (39), the critical buckling load as well as the mode shapes may be obtained.

8. The static analysis

The same procedure used for stability analysis may be implemented to obtain the standard form of the
static analysis system of equations as
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Sbb½ 	 Sbd½ 	
Sdb½ 	 Sdd½ 	

� �
fUbg
fUdg


 �
¼ f0g

fpg


 �
ð40Þ

By eliminating the boundary degrees of freedom, one has

½S	fUdg ¼ fpg ð41Þ
where ½S	 ¼ ½Sdd	 � ½Sdb	½Sbb	�1½Sbd	. If, on the boundaries, there exists any loading condition, then Eq. (41)
may be modified to include these effects as

Sbb½ 	fUbg þ Sbd½ 	fUdg ¼ fpbg ð42Þ
In the above equation, fpbg represents the applied loads on the boundaries. Also, Eq. (40) takes the fol-
lowing form

S½ 	fUdg ¼ fPg ð43Þ
where

fpg � ½Sdb	½Sbb	�1fpbg ¼ fPg
After evaluation of the displacements, moments and shear forces and various components of stress can be
obtained.

9. Numerical results

In order to demonstrate the efficiency of the methodology for the static and stability analyses of irregular
straight-sided quadrilateral plates, several different plate examples problems, i.e., skew plates, symmetric
and unsymmetric trapezoidal plates under different boundary conditions and loading conditions, and for
different skew angles, aspect ratios, and cord ratios will be studied (see Fig. 2). The Poisson’s ratio is as-
sumed to be 0.3 for all examples unless otherwise specified.

9.1. Static analysis results

In Table 1, the deflection (w ¼ ðDwÞ=ðqa4 sin hÞ) and the bending moments (Mx ¼ ðDMxÞðqa2 sin hÞ),
(My ¼ ðDMyÞðqa2 sin hÞ) at the midpoint of a S–C–S–C rhombic plate under a uniform loading q are shown.
The results are compared with those from the spline-FEM (SFEM) given by Tham et al. (1988) and those

Fig. 2. Skew plate under in-plane loading.
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using B3-spline functions as given by Wang and Hsu (1994). The exact solutions for My (Timoshenko and
Woinowsky-Krieger, 1970) do compare very well.

In Table 2, the deflection and moments again at the midpoint for a S–C–S–C supported irregular
quadrilateral plate (see Fig. 3) under a uniformly distributed load (p ¼ 1, D ¼ 1) are shown. The results are
compared with those from the B3-spline method given by Wang and Hsu (1994).

In Table 3, the convergence behavior of the method is studied by determining the static results for a fully
clamped skew plate (C–C–C–C) with a=b ¼ 1 which are compared with the solutions of two different forms
of finite elements formulations given by Sengupta (1995) and Butalia et al. (1990).

Again, in Table 4, the convergence behavior of the method is studied for the static analysis of a skew
plate with two opposite edges free and the other edges clamped, i.e., C–F–C–F with a=b ¼ 1 at different
skew angles. The results are compared with those given by Butalia et al. (1990) and with finite elements
results given by Sengupta (1995). In all cases, one can find that the method converges to accurate solutions.

Table 1

Deflections and bending moments at midpoint of S–C–S–C rhombic plate

Parameter Method Nn Skew angle

90� 75� 60� 45� 30�

w Present 11 0.1917 0.1764 0.1355 0.0821 0.00336

15 0.1917 0.1764 0.1355 0.0821 0.00337

19 0.1917 0.1764 0.1355 0.0821 0.00338

Tham et al. (1988) 0.192 0.176 0.135 0.0815 0.0327

Wang and Hsu (1994) 0.192 0.176 0.135 0.0814 0.0326

Mx Present 11 0.02439 0.02335 0.02033 0.01561 0.00975

15 0.02439 0.02334 0.02033 0.01563 0.00981

19 0.02439 0.02334 0.02033 0.01565 0.00986

Tham et al. (1988) 0.0244 0.0233 0.0203 0.0156 0.0098

Wang and Hsu (1994) 0.0244 0.0234 0.0204 0.0157 0.0097

My Present 11 0.03324a 0.03272 0.03096 0.02743 0.0212

15 0.03324 0.03271 0.03096 0.02746 0.0214

19 0.03324 0.03271 0.03096 0.02748 0.0215

Tham et al. (1988) 0.0333 0.0328 0.0310 0.0276 0.0216

Wang and Hsu (1994) 0.0333 0.0329 0.0312 0.0278 0.0217

a Exact solution¼ 0.0332 (Timoshenko and Woinowsky-Krieger, 1970).

Table 2

Deflections and moments at midpoint for an irregular quadrilateral plate under uniformly distributed load (p ¼ 1, D ¼ 1)

Method Nn w Mx My Mxy

Present 5 61.5593 6.14657 3.92910 0.17738

7 58.9701 5.95737 3.68566 0.20785

9 58.9423 5.95013 3.69177 0.20762

11 58.9418 5.94970 3.69271 0.20539

13 58.9411 5.94969 3.69269 0.20496

15 58.9408 5.94966 3.69268 0.20494

17 58.9407 5.94964 3.69268 0.20491

19 58.9406 5.94964 3.69268 0.20487

21 58.9406 5.94963 3.69270 0.20485

Wang and Hsu (1994) 58.929 5.984 3.7006 0.2070
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In Table 5, the method’s convergence is tested at different numbers of grid points for the static analysis
results of a C–F–C–F trapezoidal plate at different cord ratios of c=b with b ¼ 0 and b=a ¼ 1 (see Fig. 4).
The converged solutions are compared with those given by Liew (1992) results.

Fig. 3. The geometry of the irregular plate.

Table 3

Convergence study of static results for fully clamped skew plates (a=b ¼ 1)

h Method Nn ðð100DÞ=ðqa4ÞÞw M1=qa2 M2=qa2

75� Present 11 0.11229 0.022796 0.020210

15 0.11229 0.022798 0.020214

19 0.11229 0.022798 0.020215

FEM (Sengupta, 1995) 0.11321 0.022574 0.020064

Elem. A (Sengupta, 1995) 0.11252 0.022814 0.020214

Elem. B (Sengupta, 1995) 0.11606 0.022373 0.020446

0.11217 0.023052 0.020395

60� Present 11 0.076883 0.019756 0.015452

15 0.076899 0.019781 0.015439

19 0.076899 0.019774 0.015439

FEM (Sengupta, 1995) 0.077619 0.019595 0.015300

Elem. A (Sengupta, 1995) 0.077094 0.019790 0.015438

Elem. B (Sengupta, 1995) 0.076762 0.019520 0.015058

Butalia et al. (1990) 0.076756 0.019976 0.015568

45� Present 11 0.037681 0.014390 0.009801

15 0.037684 0.014425 0.009753

19 0.037685 0.014435 0.009749

FEM (Sengupta, 1995) 0.038044 0.014294 0.009624

Elem. A (Sengupta, 1995) 0.037819 0.014439 0.009751

Elem. B (Sengupta, 1995) 0.037700

Butalia et al. (1990) 0.037481 0.014567 0.009733

30� Present 15 0.010820 0.008006 0.004541

19 0.010821 0.008012 0.004535

25 0.010822 0.008020 0.004534

FEM (Sengupta, 1995) 0.010912 0.007938 0.004446

Elem. A (Sengupta, 1995) 0.010894 0.008022 0.004551

Elem. B (Sengupta, 1995) 0.010856 0.007930 0.004370

Butalia et al. (1990) 0.010650 0.008151 0.004410
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In Table 6, the method convergence and accuracy is again tested for unsymmetric (skew) simply sup-
ported trapezoidal plates (a=b ¼ 1:5; c=b ¼ 0:4) at two different values of b angle (see Fig. 4). It seems even
11 grid points in each direction would be enough for a very accurate solution.

Table 4

Convergence study of static results for skew plates with two opposite edges free and other edges clamped (C–F–C–F; a=b ¼ 1)

h Method Nn ðð100DÞ=ðqa4ÞÞw M1=qa2 M2=qa2

75� Present 11 0.226923 0.038293 0.0094680

15 0.227157 0.038340 0.0094663

19 0.227216 0.038353 0.0094631

21 0.227226 0.038357 0.0094624

FEM (Sengupta, 1995) 0.227794 0.038026 0.0093685

Elem. A (Sengupta, 1995) 0.227575 0.038364 0.0094657

Elem. B (Sengupta, 1995) 0.225850 0.039029 0.009592

Butalia et al. (1990) 0.227469 0.039410 0.009806

60� Present 15 0.15552 0.031790 0.005480

19 0.15564 0.031847 0.005520

23 0.15572 0.031883 0.005538

25 0.15574 0.031886 0.005545

FEM (Sengupta, 1995) 0.15632 0.031694 0.005598

Elem. A (Sengupta, 1995) 0.15612 0.031989 0.005643

Elem. B (Sengupta, 1995) 0.15507 0.032639 0.005684

Butalia et al. (1990) 0.15609 0.033130 0.006076

45� Present 13 0.073987 0.021747 0.000059

15 0.074775 0.021924 0.000065

19 0.075595 0.022115 0.000072

25 0.076092 0.022257 0.000078

FEM (Sengupta, 1995) 0.076750 0.022313 0.000103

Elem. A (Sengupta, 1995) 0.076756 0.022572 0.000102

Elem. B (Sengupta, 1995) 0.076724 0.023023 0.000089

Butalia et al. (1990) 0.079819 0.023807 0.000180

30� Present 19 0.0207 0.011710 0.002756

21 0.021010 0.011814 0.002656

25 0.021407 0.011961 0.002501

FEM (Sengupta, 1995) 0.022025 0.011851 0.0021587

Elem. A (Sengupta, 1995) 0.022131 0.012067 0.0022955

Elem. B (Sengupta, 1995) 0.021912 0.012175 0.0024535

Butalia et al. (1990) 0.021800 0.012991 0.0007655

Table 5

Convergence and accuracy study of C–F–C–F trapezoidal plates (b ¼ 0; b=a ¼ 1)

Method Nn c=b ¼ 0:3 c=b ¼ 0:5

ðð100DÞ=ðqa4ÞÞw M1=qa2 M2=qa2 ðð100DÞ=ðqa4ÞÞw M1=qa2 M2=qa2

Present 11 0.2808 0.041518 0.008070 0.2662 0.040978 0.008781

13 0.2815 0.041591 0.008009 0.2664 0.041004 0.008755

15 0.2819 0.041608 0.008000 0.2665 0.041007 0.008746

17 0.2820 0.041617 0.007988 0.2666 0.041010 0.008738

19 0.2822 0.041623 0.007980 0.2666 0.041010 0.008738

21 0.2822 0.041625 0.007975 0.2666 0.041010 0.008738

Liew (1992) 0.2816 0.041253 0.007626 0.2662 0.040743 0.008637
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9.2. Stability analysis results

In Table 7, again convergence and accuracy for the solutions for the critical buckling load
(K ¼ ðNxa2Þ=ðp2DÞ) of a symmetric trapezoidal plate with a=b ¼ 1 under three different boundary condi-
tions with different cord ratios are presented. Exact solutions and Levy’s solution (Levy, 1942) are given for
comparisons.

In Table 8, the results for the critical buckling load (K ¼ ðNxa2Þ=ðp2DÞ) of a symmetric trapezoidal plate
but under different forms of loading condition, i.e., Nx ¼ Ny 6¼ 0, are presented.

In Table 9, a convergence study is carried out on the critical buckling load (K ¼ ðNxa2Þ=ðp2DÞ) mea-
surement for unsymmetrical trapezoidal plates at different angles for b under the loading condition
Nx ¼ Ny 6¼ 0.

In Table 10, accuracy and convergence of the critical buckling load (K ¼ ðNxa2Þðp2DÞ) for a simply
supported skew plate with skew angle h ¼ 45� under combined in-plane loading are verified. The results are
compared with those given by Jaunky et al. (1995) using Rayleigh-Ritz and FEMs and also those given by
Kennedy and Prabhakara (1979).

10. Conclusion

An DQ methodology is introduced to study static and stability analyses of irregular quadrilateral
straight-sided thin plates. The methodology requires less computation for the evaluation of the weighting
coefficients in comparison with other developed DQ methodologies for fourth order partial differential
equations which have used the first order derivatives as the second degrees of freedom. Through the

Table 6

Convergence study of static results for unsymmetric simply supported trapezoidal plates (a=b ¼ 1:5; c=b ¼ 0:4)

Nn b ¼ 10� b ¼ 20�

ðð100DÞ=ðqa4ÞÞw M1=qa2 M2=qa2 ðð100DÞ=ðqa4ÞÞw M1=qa2 M2=qa2

11 0.004733 0.02213 0.009401 0.004147 0.02098 0.00834

13 0.004733 0.02213 0.009401 0.004147 0.02098 0.00834

15 0.004733 0.02213 0.009402 0.004147 0.02099 0.00834

17 0.004733 0.02213 0.009402 0.004147 0.02099 0.00835

19 0.004733 0.02213 0.009402 0.004147 0.02099 0.00835

Fig. 4. Geometry of trapezoidal plate.
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Table 7

Convergence behavior of critical buckling coefficients K ¼ ðNxa2=p2DÞ of rhombic plates (Nx 6¼ 0)

Boundary type Method Nn Skew angle

90� 75� 60� 45�

S–S–S–S Present 7 4.0000 4.3970 5.9445 10.5535

9 4.0000 4.3943 5.9057 10.1344

13 4.0000 4.3930 5.8804 9.9440

15 4.0000 4.3928 5.8751 9.8997

19 4.0000 4.3926 5.8693 9.8456

Wang et al. (1991) 4.0000 4.39 5.98 9.87

Fried and Schmitt (1972) 4.0 5.91 10.2

York and Williams (1995) 4.0 4.74 7.63 13.54

C–C–C–C Present 7 9.8152 10.6312 13.9785 24.8297

9 10.0787 10.8309 13.5050 20.5022

13 10.0730 10.8346 13.5381 20.1088

17 10.0740 10.8347 13.5380 20.1053

Wang et al. (1991) 10.08 10.89 13.75 20.69

York and Williams (1995) 10.07 10.87 13.58 20.21

S–C–S–C Present 7 7.6420a 8.2501 10.6297 17.8800

9 7.6879 8.2938 10.4882 15.9530

15 7.6913 8.30188 10.5015 15.9156

19 7.6913 8.30191 10.5018 15.9160

Wang et al. (1991) 7.7 8.3 10.6 16.4

S–F–S–F Present 7 0.95233 1.07908 1.5722 2.9885

9 0.95231 1.07320 1.5450 2.9142

13 0.95231 1.07000 1.5300 2.8673

17 0.95231 1.06890 1.5236 2.8294

19 0.95231 1.0686 1.5215 2.8146

Wang et al. (1991) 0.95 1.1 1.5 2.8

C–F–C–F Present 7 3.8334 4.2152 5.4137 11.142

9 3.9209 4.2960 6.2827 8.4145

13 3.9182 4.2838 5.6289 8.2154

15 3.9183 4.2822 5.6265 8.1817

19 3.9185 4.2810 5.6199 8.1452

a Exact solution¼ 7.69 (Timoshenko and Woinowsky-Krieger, 1959).

Table 8

Convergence study of critical buckling coefficient (K ¼ ðNxa2Þ=ðp2DÞ) of trapezoidal plates (Nx ¼ Ny 6¼ 0; a=b ¼ 1; b ¼ 0)

Boundary type c=b Nn ¼ Ng

11 13 15 17 19

S–S–S–S 0.2 3.8233 3.8233 3.8233 3.8233 3.8233

0.4 3.1197 3.1196 3.1196 3.1195 3.1195

0.6 2.5976 2.5976 2.5976 2.5975 2.5975

C–C–C–C 0.2 10.710 10.703 10.703 10.703 10.703

0.4 8.7320 8.7307 8.7308 8.7308 8.7308

0.6 7.0952 7.0951 7.0951 7.0951 7.0951

S–C–S–C 0.2 5.1623 5.1627 5.1629 5.1630 5.1630
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methodology, the boundary conditions are implemented accurately. The accuracy, convergence, and sta-
bility of the solution procedure results were studied through different examples for static as well as stability
analysis of irregular skew plates at acute angles under different boundary conditions including the free-edge
boundary type. The results were compared with those of other DQMs as well as other numerical tech-
niques.

Appendix A

The transformation matrices may be obtained from Eq. (5) as

½J11	 ¼
x;n y;n
x;g y;g

� �
; ½J21	 ¼

x;nn y;nn

x;gg y;gg

x;ng y;ng

24 35 ðA:1Þ

½J22	 ¼
x2;n y2;n x;ny;n
x2;g y2;g x;gy;g

x;nx;g y;ny;g 1
2
ðx;ny;g þ x;gy;nÞ

24 35 ðA:2Þ

½J31	 ¼

x;nnn y;nnn

x;ggg y;ggg

x;nng y;nng

x;ngg y;ngg

2664
3775 ðA:3Þ

Table 9

Convergence study of critical buckling coefficient (K ¼ ðNxa2Þ=ðp2DÞ) of unsymmetrical trapezoidal plates (Nx ¼ Ny 6¼ 0; a=b ¼ 1:5;
c=b ¼ 0:4)

b Nn ¼ Ng

9 11 13 15 17 19 21

10� 5.4824 5.4824 5.4824 5.4824 5.4824 5.4824 5.4824

20� 5.78 5.7862 5.7861 5.7860 5.7860 5.7859 5.7859

Table 10

Accuracy and convergence study of critical buckling coefficients ðK ¼ ðNxa2Þ=ðp2DÞÞ for simply supported skew plates with skew angle

h ¼ 45� under combined in-plane loading (a=b ¼ 1)

Method Nn ¼ Ng Nx ¼ Ny ¼ 1 Nx ¼ Ny ¼ 0

Nxy ¼ 0 2Nxy ¼ 1 Nxy ¼ 0

Present 5 4.3369 5.4237 3.6020

7 3.9412 4.7137 3.3430

9 3.8678 4.5970 3.2911

11 3.8332 4.5493 3.2650

13 3.8124 4.5212 3.2490

15 3.7984 4.5026 3.2383

17 3.7885 4.4894 3.2307

19 3.7812 4.4797 3.2250

Rayleigh-Ritz (Jaunky et al., 1995) 3.938 4.697 3.342

STAGS (Jaunky et al., 1995) 3.656 4.334 3.119

Kennedy and Prabhakara (1979) 3.38 4.00 2.900
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½J32	 ¼

3x;nx;nn 3y;ny;nn 3ðx;nny;n þ y;nnx;nÞ
3x;gx;gg 3y;gy;gg 3ðx;ggy;g þ y;ggx;gÞ

x;nnx;g þ 2x;ngx;n y;nny;g þ 2y;ngy;n x;nny;g þ y;nnx;g þ 2x;ngy;g þ 2y;ngx;n
x;ggx;n þ 2x;ngx;g y;nny;n þ 2y;ngy;g x;nny;g þ y;nnx;g þ 2x;ngy;g þ 2y;ngx;n

2664
3775 ðA:4Þ

½J33	 ¼

x3;n y3;n 3x2;ny;n 3x;ny2;n
x3;g y3;g 3x2;gy;g 3x;gy2;g

x2;nx;g y2;ny;g x2;ny;g þ 2x;nx;gy;n y2;nx;g þ 2x;ny;gy;n
x2;gx;n y2;gy;n x2;gy;n þ 2x;nx;gy;g y2;gx;n þ 2x;gy;gy;n

26664
37775 ðA:5Þ

Appendix B

The effective shear forces may be written as

fQngT ¼ fngT
oMx

ox
þ oMxy

oy
oMy

oy
þ oMxy

ox

8>><>>:
9>>=>>;þ ½ xs ys 	

oMsn

ox
oMsn

oy

8><>:
9>=>; ðB:1Þ

In the above equation,

fngT ¼ ½ nx ny 	;
ox
os

oy
os

� �
¼ ½�ny nx 	

where nx, ny are the components of the unit normal to the boundary of the physical domain. Also, one may
note that (Timoshenko and Woinowsky-Krieger, 1970)

Msn ¼ nxnyð�Mx þMyÞ þ ðx2x � n2yÞMxy ¼ f~nngTfMg ðB:2Þ

Here,

f~nngT ¼ ½�nxny nxny ðn2x � n2yÞ 	; fMgT ¼ ½Mx My Mxy 	

Using the constitutive law for bending moments, Eq. (B.2) may be written as

Msn ¼ feDDgTfKg ðB:3Þ

where

feDDgT ¼ f~nngT½D	½I 	; ½D	 ¼
D11 D12 D13

D12 D22 D23

D13 D23 D33

24 35
Also, fKg and ½I 	 are given by Eqs. (27) and (21). The derivative of Mns can be evaluated as

oMsn

ox
¼ ofeDDgT

ox
fKg þ feDDgT ofKg

ox
ðB:4Þ

oMsn

oy
¼ ofeDDgT

oy
fKg þ feDDgT ofKg

oy
ðB:5Þ
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For a quadrilateral straight-sided plate, the first derivatives on the right hand side of Eqs. (B.4) and (B.5)
are zero. Also, in order to do transformation more easily and systematic for programming, one may note
that (Tham et al., 1988)

oK
ox

¼
1 0 0 0
0 0 0 1
0 0 1 0

24 35
o3w
ox3
o3w
oy3
o3w
ox2 oy
o3w
oxoy2

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
;

oK
oy

¼
0 0 1 0
0 1 0 0
0 0 0 1

24 35
o3w
ox3
o3w
oy3
o3w
ox2 oy
o3w
oxoy2

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
ðB:6Þ

Using the constitutive law for bending and rearranging terms, the first term in Eq. (B.1), i.e., Qn, becomes,

Qn ¼ eeDDeDDn oT

o3w
ox3
o3w
oy3
o3w
ox2 oy
o3w
oxoy2

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
ðB:7Þ

where

f eeDDeDDg ¼

ðnxD11 þ nyD16Þ
ðnxD23 þ nyD22Þ

ð3nxD13 þ nyðD12 þ 2D33ÞÞ
ðnxðD12 þ 2D33Þ þ 3nyD23Þ

8>><>>:
9>>=>>;

Using Eqs. (B.4)–(B.6), Eq. (B.1) becomes

fF gT

o3w
ox3
o3w
oy3
o3w
ox2 oy
o3w
oxoy2

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
¼ 0 ðB:8Þ

where

fF gT ¼ f eeDDeDDgT þ ox
os

feDDg
1 0 0 0
0 0 0 1
0 0 1 0

24 35þ oy
os

feDDg
0 0 1 0
0 1 0 0
0 0 0 1

24 35
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