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Abstract

A differential quadrature (DQ) methodology is employed for the static and stability analysis of irregular quadri-
lateral straight-sided thin plates. A four-noded super element is used to map the irregular physical domain into a square
computational domain. Second order transformation schemes with relative ease and low computational effort are
employed to transform the fourth order governing equations of thin plates between the domains. Within the domain,
the displacements are the only degrees of freedom whereas, along the boundaries, the displacements as well as the
second order derivatives of the displacements with respect to the associated normal coordinate variables in the com-
putational domain are the two sets of degrees of freedom. The implementation procedures for different boundary
conditions including free-edge boundaries are formulated. To demonstrate the accuracy, convergency and stability of
the methodology, detailed studies of skewed and trapezoidal plates for different geometries under different boundary
and loading conditions are made. Good agreement is achieved between the results of the present methodology and
those of other DQ methodologies or other comparable numerical algorithms.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Wang et al. (1994) used the differential quadrature method (DQM) for the first time for buckling and free
vibration analyses of thin skew plates. They employed the method for the analysis of simply supported and
clamped plates. Using other numerical algorithms such as the finite element method (FEM), work on ir-
regular plate problems is not new and goes back to the early stages of the development of these algorithms.
Related to static and buckling analysis of skew plates, some of the early and related work may be found in
references (Argyris, 1965; Jirousek and Leon, 1977; Kennedy and Prabhakara, 1979; Yetram, 1972).

Although the DQM has now established itself as an alternative numerical tool, still some major diffi-
culties have to be dealt with. In this respect, a major difficulty arises from the implementation of the
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boundary conditions which has been explained in previous papers (Karami and Malekzadeh, 2002, in
press). Methods such as the presentation of the boundary points as two very near neighboring points (the
so-called o-technique, Bert et al., 1988; Bert and Malik, 1996a,b); or building special weighting coefficients
to stand for the boundary conditions (Wang and Bert, 1993); or taking the slope on the boundary as a
degree of freedom (Chen et al., 1997; Wang and Gu, 1997; Wu and Liu, 1999, 2000, 2001); and the so-called
CBCGE and SBCGE methods (Shu and Du, 1997a,b) are different treatments that have been introduced
and implemented. Another alternative method to be introduced here and to be implemented in static and
stability analyses of arbitrary straight-sided quadrilateral thin plates is claimed to be general and more
accurate for these types of structures. In the present methodology, the weighting coefficients are not ex-
clusive and any of the general schemes used in conventional DQM may be employed to determine the
weighting coefficients. The applicability of the methodology to beam analysis and also to the analysis of the
free vibration of irregular plates was demonstrated through previous studies (Karami and Malekzadeh,
2002, in press). It has been proved that, for cases where conventional DQMs have not yielded a convergence
trend or erratic behavior, the new methodology yields accurate results with excellent convergency behavior.
All kinds of boundary conditions, including free-edge boundary conditions, can be implemented in a
mechanized form. Based on this methodology, the DQ static and stability analyses of irregular skew plates
under all forms of loading and geometrical boundary conditions are to be addressed in this paper. The
implementations of the boundary conditions in a systematic form are to be demonstrated.

2. Review of the differential quadrature method

In the method of DQ, the partial derivative of the field variable at a discrete point in the computational
domain is approximated by a weighted linear sum of the values of the field variable along the line passing
through that point which is parallel to the coordinate direction of the derivative. Therefore, according to
the DQ rule for any function { }, one has,
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where A,(f), A,(-j'-” are the weighting coefficients corresponding to first order derivatives, and B,(f> and ij”) are
the weighting coefficients corresponding to second order derivatives in ¢ and y directions. N: and N, are the
numbers of grid points along the ¢ and 5 axes, respectively. From the above approximations, one can
realize that determination of the weighting functions plays an important role in DQM analysis. Among the
many methods that have been used to evaluate the weighting coefficients in DQ analysis, the method de-
veloped primarily by Michelsen and Villadsen (1972), which was used by Shu and Richards (1992), is to be
employed in this work as well. It has been claimed that this method is computationally more efficient and
accurate. In fact Michelsen and Villadsen (1978) have shown that DQM’s coefficients are the same as
collocation method’s ones when Lagrange interpolation functions are used as the test functions. For the
grid points arrangements, the distributions according to Shu and Richards (1992) have been used. This has
also proved to yield more accurate results.
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3. The degrees of freedom

A natural coordinate system (&, #) for the computational domain is chosen, where —1 <&, n< 1. The
displacement w, and the second derivative of the displacement with respect to a natural coordinate variable
normal to the boundary, and only along the boundary, would be set as the two degrees of freedom of the
problem. For example, along the boundary, ¢ = 1, k* = 0*w/ 0&* presents the second degree of freedom.
Hence, in general, k" (n = ¢ or n) would play the role of an unknown parameter on the boundary. In order
to incorporate the new degrees of freedom into the differential equations and facilitate the boundary
conditions implementation, the higher order derivatives (derivative with order > 2) with respect to the
coordinate system of the actual domain would be expressed in terms of k" (n = & or n) and also the dis-
placement w using the geometrical mapping procedure.

4. The geometrical mapping

Consider an arbitrary straight-sided quadrilateral plate shown in Fig. 1(a). The geometry of this plate
can be mapped into a rectangular plate to be referred to as the computational domain. The coordinate axes
of the quadrilateral plate which occupy the actual (or physical) domain are denoted by x and y; whereas
those of the computational domain are denoted by ¢ and . The mapping process follows the standard
procedure used widely in conventional finite element formulations; the physical domain is mapped into the
computational domain according to the following transformation law

Ns

X = inl//i(éa n), Y= nylﬁ,-(f,n) 3)

i=1 i=1

Ny

where x; and y; are the coordinates of node i in the physical domain, and N, is the number of nodal points.
V;(&, 1) is the shape function associated with node i:

lﬁi(f,ﬂ)zi(l‘f'ffi)(l‘*‘ﬂﬂf)a i:17"'74 (4)

where £ and #; are the coordinates of nodal point i in the computational domain ¢ — 5. The transfor-
mation law in (4) would rule the relations between the geometries of the two domains. The derivatives
of any function defined in one domain may be transformed into the other using the mapping or shape
function rule defined. For example, the first, second, and third derivatives of any function { } in the

(@) (b)

Fig. 1. (a) An arbitrary straight-sided quadrilateral plate (physical domain), (b) computational domain.
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computational domain may be obtained in terms of the derivatives in the physical domain from the chain
rule according to

2
{3=>A b (5)
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where x;;, x;; and x;;;; the components of the transformation matrices for the derivatives, are related to
the shape functions which map the geometry for the two coordinates. x;,; is a component of the so-called
Jacobian transformation matrix. The inverse transformation matrices may be evaluated so that the deri-
vatives in the physical domain may be determined in terms of the derivatives in the computational domain,
so that
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where [T, the inverse transformation matrices, are related to the transformation matrices according to,
[Tl =Vl [Tu] = =] 'Walln] ™, [Tn] = Un]™
[T] = =] sl ™ [Tl = —s]  Wallal ™ [T] = Ux] ™

In Appendix A, the components of the transformation matrices, [J;;] are given.
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5. DQ analogous of plate governing equation

The general governing equation of a thin, materially and geometrically systemic, elastic plate can be
written as,

o*w *w o*w o*w o*w w w w 0w
O T O T Cagar T oy T O N Mg Mg, TR TG
= p(x,y,1) (11)

where, w, Ny, N,, Ny, and p(x, y, t) are the transverse displacement, in plane normal and shear edge forces in
x and y directions, and the intensity of transverse distributed loads, respectively. Also, C;, p, h, k are, re-
spectively, the flexural rigidity coefficients, density, thickness, and elastic stiffness of the support.

Two second order transformation processes transform the governing equation from the physical domain
into the computational domain. Bert and Malik (1996a,b) used the first order transformation rule four
times to do the job. The approach employed here will need less computational effort. To employ the second
order transformations, K*, K” and K* are defined as,

2 2 2
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Using these definitions, the governing equation, i.e., Eq. (11), takes the following form,
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In Eq. (13), N, is chosen as the load parameter. Other nonzero components of the plane forces may be
employed as loading parameters to study the stability analysis of the equilibrium state if required. Em-
ploying the second order transformation law given by Eq. (9), the governing equation (13) becomes,
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In the above equation,
T
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For grid points within the domain, the second order derivatives are expressed in terms of the displacement,
w, that is,

ZZVIB;:W”U
{<H ey = ZN" BYw,, fori=2,3,...,N: -1, and j=2,3,...,N, — 1 (15)
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Using Egs. (1), (2), and (15), the DQ analogue to the plate governing equation can be written:
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fori=23,...,N:—1, and j=2,3,....N,— 1

A second order transformation will be used to transform K* and K? from the physical domain into the
computational domain. To do so, one may employ Eq. (9) in the following form at any arbitrary grid point
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where [T5;] and [Ty] are the reduced form of the second order transformation [7»] and [T»,]. Employing the
above relation, Eq. (16) may be written as
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Using quadrature rule for the first and second orders derivatives (except for those which are chosen as
the degrees of freedom at the boundary points), one may reduce the governing equation to a standard
form.

[Sao){Us} + [Saa{Ua} + Nx([Bao){Up} + [Baa]{Ua}) + P{ aagd } ={p} (19)

In the above equation,

wi={Ih)l W @,

The subscript b denotes a boundary point whereas d represents a domain grid point.

6. Implementation of boundary conditions

In the following section, the DQ analogues of three types of boundary conditions, i.e., simply supported
(S), clamped (C), and free edges (F) will be presented. In order to simplify the notations in the DQ ana-
logues, we use the indices b; for the edges & = 1 which take the value of 1 at the edge ¢ = —1 and N: at the
edge ¢ = 1, respectively. Similarly, b, will be used for the edges n = +1, in which b, =1 at = —1 and
b, = N, at the edge n = 1, respectively.

6.1. Simply supported
For simply supported edges, the boundary conditions are:
w=0, M,=0 (20)

The bending moment M, can be expressed in terms of the Cartesian components of the moments at that
point as (Timoshenko and Woinowsky-Krieger, 1970);

M, = niMX + niMy + 2nn,M,,

where n, and n, are, respectively the x and y components of the unit normal to the boundary. Eq. (20) may
be formatted as,

M, = {a}'{M} = {n}' DK} (1)
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Using the second order transformation law

where,

1
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[D] is the bending stiffness matrix of the plate (see Appendix B).
from Eq. (9), Eq. (21) reads,
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If edges £ = —1 or & = 1 are simply supported, the DQ analogues of the first equation in (20) will take the
form

wyy =0 forJ=23,...,N;—1 and b; =1 or b; =N; (23)
whereas the DQ analogues of the second equation (20) will be
: Klg; J
g { S
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In the same way for edges n = —1 or n = 1:
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6.2. Clamped

The boundary conditions for clamped edges can be stated as

ow
= —_— = 2
w =0, B 0 (27)

where n stands for & and .
If the edges ¢ = —1 or ¢ = 1 will be clamped, the DQ analogues of the first equation in (27) become

wpy =0 forJ=23,...,N.—1 and b; =1 or b; = N; (28)

A zero slope boundary condition would be implemented through x¢. For example, along the edge ¢ = —1
the condition dw/0¢ = 0 might be implemented by
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ZA,, =0 forJ=23,...,N:—1 (29)
M=ml (&)
where ml = 2 for a zero slope condition at £ = —1, otherwise ml = 1. For a zero slope condition at edge

¢ =1, mu=N:— 1, otherwise, mu = N:. Also, as stated before, b: =1 for £ = —1 and b; = N: for £ = 1.
The slope term in the summation in Eq. (29) can be expanded

Z ZA,, VAW, =0 for J =23, (30)

M=ml n=
In a similar way, one can implement the clamped boundary condition at edge # = —1 or n = 1; the results

read

wp, =0 for/=23,...N,—1 and b, =1 or b, =N, (31)
K, — Z ZAQ@W D =0 forJ=2,3,...,N,—1 (32)

M=ml n=
where ml = 2 if a zero slope condition applies to the edge # = —1, otherwise, ml = 1. For a zero slope
condition at edge n = 1, ml = N, — 1, otherwise ml = N,.. Also, b, =1 for y = —1 and b, = N, for n = 1.

6.3. Free-edge boundary condition

For a free boundary condition the conditions (Timoshenko and Woinowsky-Krieger, 1970)
aMsn
Mﬂ = ()’ Qﬂ

should be satisfied. s and n are the coordinate variables of the axes tangent and normal to the boundary, Q,
is shear force and M, is the twisting moment at the edges (Timoshenko and Woinowsky-Krieger, 1970).
The DQ analogue of M, is given by Egs. (24) and (26). The DQ analogues of the effective shear stresses will
be derived based on a new approach (Karami and Malekzadeh, in press). Eq. (33) may be written as,
Pw
ol
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3
TS SR (34)
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The details of derivation and also the definition of matrix {F} are given in Appendix B. Using Eq. (10), Eq.
(34) becomes
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where

{Fs} = {FY'[Ta], {F2} = {F}Y'[Ta], {F\}={F}'[Ta]

Along the edges ¢ = —1 or £ = 1, the DQ rule can be applied to Eq. (35) to derive DQ analogues of zero
effective shear forces,

N¢ E
Zm;l CisfanmJ Kﬁ
N () beJ
L Cwy,
=T anl jn Wben — T
{FS}bEJ Zfo . ZanBgf) A§£>W + {F2}b§J Zn 1 Wb n
Ny & pd Zm 1 Z b cm Jn Wml’l
Em 1 Zn 1 Ahc BJn Winn
B Z/y:: A( 9 Wy
+{Fi} 1 (bm =0 forJ=2,3,...,N; — 1 (36)
) Zn lAb £n b gn
The above relations along the edges # = —1 or # = 1 can be written similarly:
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m=1 Im b,,nwmn
Ne ()
_ D met A Wins,
+{F1}y, Nl =0 for/=23,...,N,—1 (37)
i n
Z Ab n Win

7. The stability analysis

The displacements on the boundaries may be written as

{w}, = [Swn]{Ua} (38)

where [Syp] is obtained by partitioning and using matrix algebra on the coefficients of the system of
equations. Using Eq. (38) and eliminating the boundary terms from the governing equation, one has

([S] + N:[B]){Ua} = {0} (39)

In the above equation,
[S] = [Sav)[Stw] + [Saa],  [B] = [Bap][Sev] + [Bad]
From Eq. (39), the critical buckling load as well as the mode shapes may be obtained.

8. The static analysis

The same procedure used for stability analysis may be implemented to obtain the standard form of the
static analysis system of equations as
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[Sob]  [Sea] | J {Us} | _ J {0}
[[Sdb] [de]] { {Uq} } N { {p} } (40)
By eliminating the boundary degrees of freedom, one has
[S]{Ud} = {p} (41)

where [S] = [Saa] — [Sdb][Sbbrl[de]. If, on the boundaries, there exists any loading condition, then Eq. (41)
may be modified to include these effects as

(S {Ub} + [Sbal{Ua} = {pv} (42)

In the above equation, {py} represents the applied loads on the boundaries. Also, Eq. (40) takes the fol-
lowing form

[S{Ua} = {P} (43)

where

{p} — [Sav][Stw] {po} = {P}

After evaluation of the displacements, moments and shear forces and various components of stress can be
obtained.

9. Numerical results

In order to demonstrate the efficiency of the methodology for the static and stability analyses of irregular
straight-sided quadrilateral plates, several different plate examples problems, i.c., skew plates, symmetric
and unsymmetric trapezoidal plates under different boundary conditions and loading conditions, and for
different skew angles, aspect ratios, and cord ratios will be studied (see Fig. 2). The Poisson’s ratio is as-
sumed to be 0.3 for all examples unless otherwise specified.

9.1. Static analysis results
In Table 1, the deflection (W = (Dw)/(qa*sin 6)) and the bending moments (M, = (DM, )(ga? sin 6)),

(M, = (DM,)(ga? sin 0)) at the midpoint of a S-C-S—C rhombic plate under a uniform loading ¢ are shown.
The results are compared with those from the spline-FEM (SFEM) given by Tham et al. (1988) and those

y

Fig. 2. Skew plate under in-plane loading.
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Table 1
Deflections and bending moments at midpoint of S—-C—-S—C rhombic plate
Parameter Method N: Skew angle
90° 75° 60° 45° 30°
w Present 11 0.1917 0.1764 0.1355 0.0821 0.00336
15 0.1917 0.1764 0.1355 0.0821 0.00337
19 0.1917 0.1764 0.1355 0.0821 0.00338
Tham et al. (1988) 0.192 0.176 0.135 0.0815 0.0327
Wang and Hsu (1994) 0.192 0.176 0.135 0.0814 0.0326
M, Present 11 0.02439 0.02335 0.02033 0.01561 0.00975
15 0.02439 0.02334 0.02033 0.01563 0.00981
19 0.02439 0.02334 0.02033 0.01565 0.00986
Tham et al. (1988) 0.0244 0.0233 0.0203 0.0156 0.0098
Wang and Hsu (1994) 0.0244 0.0234 0.0204 0.0157 0.0097
M, Present 11 0.03324% 0.03272 0.03096 0.02743 0.0212
15 0.03324 0.03271 0.03096 0.02746 0.0214
19 0.03324 0.03271 0.03096 0.02748 0.0215
Tham et al. (1988) 0.0333 0.0328 0.0310 0.0276 0.0216
Wang and Hsu (1994) 0.0333 0.0329 0.0312 0.0278 0.0217

@ Exact solution= 0.0332 (Timoshenko and Woinowsky-Krieger, 1970).

using B3-spline functions as given by Wang and Hsu (1994). The exact solutions for M, (Timoshenko and
Woinowsky-Krieger, 1970) do compare very well.

In Table 2, the deflection and moments again at the midpoint for a S—-C-S-C supported irregular
quadrilateral plate (see Fig. 3) under a uniformly distributed load (p = 1, D = 1) are shown. The results are
compared with those from the B3-spline method given by Wang and Hsu (1994).

In Table 3, the convergence behavior of the method is studied by determining the static results for a fully
clamped skew plate (C—-C—C-C) with a/b = 1 which are compared with the solutions of two different forms
of finite elements formulations given by Sengupta (1995) and Butalia et al. (1990).

Again, in Table 4, the convergence behavior of the method is studied for the static analysis of a skew
plate with two opposite edges free and the other edges clamped, i.e., C-F-C-F with a/b = 1 at different
skew angles. The results are compared with those given by Butalia et al. (1990) and with finite elements
results given by Sengupta (1995). In all cases, one can find that the method converges to accurate solutions.

Table 2
Deflections and moments at midpoint for an irregular quadrilateral plate under uniformly distributed load (p =1, D = 1)
Method Ne w M, M, M,,
Present 5 61.5593 6.14657 3.92910 0.17738
7 58.9701 5.95737 3.68566 0.20785
9 58.9423 5.95013 3.69177 0.20762
11 58.9418 5.94970 3.69271 0.20539
13 58.9411 5.94969 3.69269 0.20496
15 58.9408 5.94966 3.69268 0.20494
17 58.9407 5.94964 3.69268 0.20491
19 58.9406 5.94964 3.69268 0.20487
21 58.9406 5.94963 3.69270 0.20485

Wang and Hsu (1994) 58.929 5.984 3.7006 0.2070
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3(12,16)
c C
2(16,4)
1(0,0)
Fig. 3. The geometry of the irregular plate.
Table 3
Convergence study of static results for fully clamped skew plates (a/b = 1)

0 Method N; ((100D) /(ga*))w M, /qd® M, /qa®
75° Present 11 0.11229 0.022796 0.020210
15 0.11229 0.022798 0.020214
19 0.11229 0.022798 0.020215
FEM (Sengupta, 1995) 0.11321 0.022574 0.020064
Elem. A (Sengupta, 1995) 0.11252 0.022814 0.020214
Elem. B (Sengupta, 1995) 0.11606 0.022373 0.020446
0.11217 0.023052 0.020395
60° Present 11 0.076883 0.019756 0.015452
15 0.076899 0.019781 0.015439
19 0.076899 0.019774 0.015439
FEM (Sengupta, 1995) 0.077619 0.019595 0.015300
Elem. A (Sengupta, 1995) 0.077094 0.019790 0.015438
Elem. B (Sengupta, 1995) 0.076762 0.019520 0.015058
Butalia et al. (1990) 0.076756 0.019976 0.015568
45° Present 11 0.037681 0.014390 0.009801
15 0.037684 0.014425 0.009753
19 0.037685 0.014435 0.009749
FEM (Sengupta, 1995) 0.038044 0.014294 0.009624
Elem. A (Sengupta, 1995) 0.037819 0.014439 0.009751

Elem. B (Sengupta, 1995) 0.037700

Butalia et al. (1990) 0.037481 0.014567 0.009733
30° Present 15 0.010820 0.008006 0.004541
19 0.010821 0.008012 0.004535
25 0.010822 0.008020 0.004534
FEM (Sengupta, 1995) 0.010912 0.007938 0.004446
Elem. A (Sengupta, 1995) 0.010894 0.008022 0.004551
Elem. B (Sengupta, 1995) 0.010856 0.007930 0.004370
Butalia et al. (1990) 0.010650 0.008151 0.004410

In Table 5, the method’s convergence is tested at different numbers of grid points for the static analysis
results of a C-F-C-F trapezoidal plate at different cord ratios of ¢/b with § =0 and b/a = 1 (see Fig. 4).
The converged solutions are compared with those given by Liew (1992) results.
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Table 4
Convergence study of static results for skew plates with two opposite edges free and other edges clamped (C-F-C-F; a/b = 1)
0 Method N: ((100D)/(ga*))w M, /qa* M,/qa®
75° Present 11 0.226923 0.038293 0.0094680
15 0.227157 0.038340 0.0094663
19 0.227216 0.038353 0.0094631
21 0.227226 0.038357 0.0094624
FEM (Sengupta, 1995) 0.227794 0.038026 0.0093685
Elem. A (Sengupta, 1995) 0.227575 0.038364 0.0094657
Elem. B (Sengupta, 1995) 0.225850 0.039029 0.009592
Butalia et al. (1990) 0.227469 0.039410 0.009806
60° Present 15 0.15552 0.031790 0.005480
19 0.15564 0.031847 0.005520
23 0.15572 0.031883 0.005538
25 0.15574 0.031886 0.005545
FEM (Sengupta, 1995) 0.15632 0.031694 0.005598
Elem. A (Sengupta, 1995) 0.15612 0.031989 0.005643
Elem. B (Sengupta, 1995) 0.15507 0.032639 0.005684
Butalia et al. (1990) 0.15609 0.033130 0.006076
45° Present 13 0.073987 0.021747 0.000059
15 0.074775 0.021924 0.000065
19 0.075595 0.022115 0.000072
25 0.076092 0.022257 0.000078
FEM (Sengupta, 1995) 0.076750 0.022313 0.000103
Elem. A (Sengupta, 1995) 0.076756 0.022572 0.000102
Elem. B (Sengupta, 1995) 0.076724 0.023023 0.000089
Butalia et al. (1990) 0.079819 0.023807 0.000180
30° Present 19 0.0207 0.011710 0.002756
21 0.021010 0.011814 0.002656
25 0.021407 0.011961 0.002501
FEM (Sengupta, 1995) 0.022025 0.011851 0.0021587
Elem. A (Sengupta, 1995) 0.022131 0.012067 0.0022955
Elem. B (Sengupta, 1995) 0.021912 0.012175 0.0024535
Butalia et al. (1990) 0.021800 0.012991 0.0007655
Table 5
Convergence and accuracy study of C-F—C-F trapezoidal plates (f = 0; b/a = 1)
Method N: ¢/b=023 ¢/b=0.5
((100D)/(ga*))w M /qd’ My/qa? ((100D)/(ga*))w  Mi/qa’ My/qa
Present 11 0.2808 0.041518 0.008070 0.2662 0.040978 0.008781
13 0.2815 0.041591 0.008009 0.2664 0.041004 0.008755
15 0.2819 0.041608 0.008000 0.2665 0.041007 0.008746
17 0.2820 0.041617 0.007988 0.2666 0.041010 0.008738
19 0.2822 0.041623 0.007980 0.2666 0.041010 0.008738
21 0.2822 0.041625 0.007975 0.2666 0.041010 0.008738
Liew (1992) 0.2816 0.041253 0.007626 0.2662 0.040743 0.008637

In Table 6, the method convergence and accuracy is again tested for unsymmetric (skew) simply sup-
ported trapezoidal plates (a/b = 1.5; ¢/b = 0.4) at two different values of f§ angle (see Fig. 4). It seems even
11 grid points in each direction would be enough for a very accurate solution.
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Fig. 4. Geometry of trapezoidal plate.

Table 6

Convergence study of static results for unsymmetric simply supported trapezoidal plates (a/b = 1.5; ¢/b = 0.4)
N p=10° p=20°

((100D)/(qa*))w My /qa® M, /qa® ((100D)/(ga*))w My /qa® M, /qd®

11 0.004733 0.02213 0.009401 0.004147 0.02098 0.00834
13 0.004733 0.02213 0.009401 0.004147 0.02098 0.00834
15 0.004733 0.02213 0.009402 0.004147 0.02099 0.00834
17 0.004733 0.02213 0.009402 0.004147 0.02099 0.00835
19 0.004733 0.02213 0.009402 0.004147 0.02099 0.00835

9.2. Stability analysis results

In Table 7, again convergence and accuracy for the solutions for the critical buckling load
(K = (N:a*)/(n*D)) of a symmetric trapezoidal plate with a/b = 1 under three different boundary condi-
tions with different cord ratios are presented. Exact solutions and Levy’s solution (Levy, 1942) are given for
comparisons.

In Table 8, the results for the critical buckling load (K = (N,a*)/(n’D)) of a symmetric trapezoidal plate
but under different forms of loading condition, i.e., N, = N, # 0, are presented.

In Table 9, a convergence study is carried out on the critical buckling load (K = (N.a*)/(n*D)) mea-
surement for unsymmetrical trapezoidal plates at different angles for f under the loading condition
Nx = Ny 7é 0

In Table 10, accuracy and convergence of the critical buckling load (K = (N.a?)(n’D)) for a simply
supported skew plate with skew angle 0 = 45° under combined in-plane loading are verified. The results are
compared with those given by Jaunky et al. (1995) using Rayleigh-Ritz and FEMs and also those given by
Kennedy and Prabhakara (1979).

10. Conclusion

An DQ methodology is introduced to study static and stability analyses of irregular quadrilateral
straight-sided thin plates. The methodology requires less computation for the evaluation of the weighting
coefficients in comparison with other developed DQ methodologies for fourth order partial differential
equations which have used the first order derivatives as the second degrees of freedom. Through the
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Table 7
Convergence behavior of critical buckling coefficients K = (N,a?/n*D) of rhombic plates (N, # 0)
Boundary type = Method N; Skew angle
90° 75° 60° 45°
S-S-S-S Present 7 4.0000 4.3970 5.9445 10.5535
9 4.0000 4.3943 5.9057 10.1344
13 4.0000 4.3930 5.8804 9.9440
15 4.0000 4.3928 5.8751 9.8997
19 4.0000 4.3926 5.8693 9.8456
Wang et al. (1991) 4.0000 4.39 5.98 9.87
Fried and Schmitt (1972) 4.0 591 10.2
York and Williams (1995) 4.0 4.74 7.63 13.54
c-C-C-C Present 7 9.8152 10.6312 13.9785 24.8297
9 10.0787 10.8309 13.5050 20.5022
13 10.0730 10.8346 13.5381 20.1088
17 10.0740 10.8347 13.5380 20.1053
Wang et al. (1991) 10.08 10.89 13.75 20.69
York and Williams (1995) 10.07 10.87 13.58 20.21
S-C-S-C Present 7 7.6420° 8.2501 10.6297 17.8800
9 7.6879 8.2938 10.4882 15.9530
15 7.6913 8.30188 10.5015 15.9156
19 7.6913 8.30191 10.5018 15.9160
Wang et al. (1991) 7.7 8.3 10.6 16.4
S-F-S-F Present 7 0.95233 1.07908 1.5722 2.9885
9 0.95231 1.07320 1.5450 2.9142
13 0.95231 1.07000 1.5300 2.8673
17 0.95231 1.06890 1.5236 2.8294
19 0.95231 1.0686 1.5215 2.8146
Wang et al. (1991) 0.95 1.1 1.5 2.8
C-F-C-F Present 7 3.8334 4.2152 5.4137 11.142
9 3.9209 4.2960 6.2827 8.4145
13 3.9182 4.2838 5.6289 8.2154
15 3.9183 4.2822 5.6265 8.1817
19 3.9185 4.2810 5.6199 8.1452

#Exact solution= 7.69 (Timoshenko and Woinowsky-Krieger, 1959).

Table 8
Convergence study of critical buckling coefficient (K = (N,a?)/(nD)) of trapezoidal plates (N, = N, # 0; a/b = 1; f = 0)
Boundary type c/b N: =N,
11 13 15 17 19
S-S-S-S 0.2 3.8233 3.8233 3.8233 3.8233 3.8233
0.4 3.1197 3.1196 3.1196 3.1195 3.1195
0.6 2.5976 2.5976 2.5976 2.5975 2.5975
Cc-C-C-C 0.2 10.710 10.703 10.703 10.703 10.703
0.4 8.7320 8.7307 8.7308 8.7308 8.7308
0.6 7.0952 7.0951 7.0951 7.0951 7.0951

S-C-S-C 0.2 5.1623 5.1627 5.1629 5.1630 5.1630
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Table 9
Convergence study of critical buckling coefficient (K = (N,a?)/(n’D)) of unsymmetrical trapezoidal plates (N, = N, # 0; a/b = 1.5;
/b =04)
B N: =N,
9 11 13 15 17 19 21
10° 5.4824 5.4824 5.4824 5.4824 5.4824 5.4824 5.4824
20° 5.78 5.7862 5.7861 5.7860 5.7860 5.7859 5.7859
Table 10

Accuracy and convergence study of critical buckling coefficients (K = (N,a*)/(n>D)) for simply supported skew plates with skew angle

0 = 45° under combined in-plane loading (a/b = 1)

Method N: =N, N, =N, =1 Ne=N,=0
Ny, =0 2N, =1 N, =0
Present 5 4.3369 5.4237 3.6020
7 3.9412 4.7137 3.3430
9 3.8678 4.5970 3.2911
11 3.8332 4.5493 3.2650
13 3.8124 4.5212 3.2490
15 3.7984 4.5026 3.2383
17 3.7885 4.4894 3.2307
19 3.7812 4.4797 3.2250
Rayleigh-Ritz (Jaunky et al., 1995) 3.938 4.697 3.342
STAGS (Jaunky et al., 1995) 3.656 4.334 3.119
Kennedy and Prabhakara (1979) 3.38 4.00 2.900

methodology, the boundary conditions are implemented accurately. The accuracy, convergence, and sta-
bility of the solution procedure results were studied through different examples for static as well as stability
analysis of irregular skew plates at acute angles under different boundary conditions including the free-edge
boundary type. The results were compared with those of other DQMs as well as other numerical tech-

niques.

Appendix A

The transformation matrices may be obtained from Eq. (5) as

V] =

Yeee

Yo
Yeey

Ve

Xee
Va] = | xu
X.én

XeVe
XV

Yee
Yom
Yeén

% (x,ﬁy.n + x,ny.i)
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3xex g 3yeve 3(xeeye +yeexe)
Vs = 3% 1% 3YnYam 3(X Y + YowXon) (A.4)
XeeXy + 20X e VeV +20aVe XeeVy +YeeXy + 2%y + 2yepxe
| XomXe + 2XenXy  VeeVe T 20V XeeVa T VeeXy + 2X ey + 2veapxe
x?i yzu 3nyc 3xcyg
[J — x?ﬂ y3'1 3 Y 3x 'lyn
nl=| . (A5)
XXy J’5J’fl xéYn+2x<anQ J/¢xf1+2xcy11yé
(XX ViVe XYt 2xexyy vixe + 20,00

Appendix B

The effective shear forces may be written as

oM, OM,, oM,
o) =mE b g (B.1)
nt= oM, oM, s W) oM, '
> o oy

In the above equation,

O A L

where n,, n, are the components of the unit normal to the boundary of the physical domain. Also, one may
note that (Timoshenko and Woinowsky-Krieger, 1970)

My, = nony (=M + M,) + (x2 — n2)M,, = {i} {M} (B.2)
Here,
(i} =[-nn, nn, (2-m)], (M} =[M, M, M,]

Using the constitutive law for bending moments, Eq. (B.2) may be written as

Msn = {E}T{K} (B3)
where
<y S Dy, D Dy
{D} ={n} D], [Dl=|Di Dxn Dy
Dz Dy D3

Also, {K} and [I] are given by Egs. (27) and (21). The derivative of M, can be evaluated as

agﬁ a{D} (k) + (o AL 6{K} (B.4)
oMy, _ a{D} T a{K} (B.5)

Jy
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For a quadrilateral straight-sided plate, the first derivatives on the right hand side of Egs. (B.4) and (B.5)
are zero. Also, in order to do transformation more easily and systematic for programming, one may note
that (Tham et al., 1988)

Pw Pw

o o

oo o1| & 001 07| ¥

oK R oK 3

R_1o 0 0 1 O/ SR S P (B.6)

& g o1 of| 2 » 1o 00 1]] 2"
0x? 0y 0x? 0y

Pw Pw

Ox 0y? 0Ox 0y?

Using the constitutive law for bending and rearranging terms, the first term in Eq. (B.1), i.e., Q,, becomes,

iw
ad
iw
=~ T 3
0.={p}{ & (B.7)
0x? 0y
Fw
Ox 0y?

where

(nD11 + n,Die)
(neDa3 + n,Dx)
(3n:D13 + ny (D12 + 2Ds33))
(n¢(D12 + 2Ds3) + 3n,D23)

(D} =

Using Egs. (B.4)-(B.6), Eq. (B.1) becomes

Pw
ox3
Pw

{F} ?ﬁ =0 (B.8)

0x? 0y
o*w
Ox 02

where

SO -
O O O
—_— 0 O
S = O

{F)' = (B} + (D) {
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